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Accuracy of reluctance network models can be improved by coupling them to finite element models. However, actually describing
the coupling in terms of a system of equations can be difficult and error-prone, especially with large problems. This paper presents
a systematic method to generate the system of equations for a coupled reluctance network and a scalar potential finite element
problem. The method works with arbitrary network topologies and can be easily extended to nonlinear problems as well. Validity
of the approach is demonstrated on a simple synchronous reluctance machine model.
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I. INTRODUCTION

RELUCTANCE networks (RN), or magnetic equivalent
circuits, are widely used in the pre-design stage and

optimization, where fast computation times are highly valued.
The networks are typically solved with the nodal method,
where a magnetic scalar potential is solved for each node in
the network [1], [2]. While easy to use, the nodal method is
known to suffer from poor convergence in nonlinear problems
[3]. Furthermore, appropriate placing of field sources into the
network for the nodal method can be a difficult task [4], [5].

Faster convergence can be obtained by solving the fluxes
rather than potentials [3]. However, this approach is rarely
used, probably due to the difficulty involved in forming the
necessary flux equations, especially with nonlinear problems.
Furthermore, most authors seem to use the mesh-based ap-
proach, which only works with planar circuits [3], [5]–[7].

Reluctance networks often fail to predict air-gap and leakage
fields accurately. Indeed, recent attention has been paid to
coupling reluctance networks to different finite element (FE)
formulations [8], [9]. However, most papers have focused
on the FE-side of the coupling, only utilizing very simple
reluctance networks solved manually. Indeed, it is reasonable
to assume that creating a large coupled system by hand will
be extremely tedious and error-prone.

This paper presents a systematic, easily programmed ap-
proach to automatically form the systems of equations for cou-
pled RN-FE problems. The RN is solved with the fundamental
loop method to avoid the problems associated with nodal- and
mesh-based approaches. Magnetic scalar potential is used for
the FE problem. Behaviour of the coupling is evaluated by
simulating a simple synchronous reluctance machine.

II. METHODS

The proposed coupling method is described here. A sim-
plified problem in Fig. 1 is used as an example. The part of
the network with the nodes 1–6 is a pure reluctance network,
while the FE part is presented with the red dashed box.

For an uncoupled RN with n nodes and b edges (reluc-
tances), it is sufficient to define b−n+1 linearly independent

Fig. 1. Example of a coupled reluctance network and FE problem.

loops, and associate a virtual flux Φ̂i to each. Then, in each of
the loops, the sum of magnetomotive force (mmf) drops over
the reluctances must equal the total mmf source for the loop.
Thus, the fluxes can be solved from

ATDRAΦ̂ = F , (1)

where A is an incidence matrix with the entries

Aij =

 1 flux j traverses edge i forwards
−1 flux j traverses edge i backwards
0 otherwise,

(2)

and DR is a diagonal matrix containing the reluctances. Φ̂ and
F are vectors of the loop fluxes and mmf sources, respectively.
The part of F due to currents can be obtained by calculating
the total current enclosed by each loop. The loops and A can
be generated by the well-known fundamental loop method, by
forming a spanning tree for the nodes of the network and then
connecting all edges outside the tree with paths going through
the tree. In the example, the spanning tree is highlighted in
blue, resulting in the loops (4,5,2,1) and (5,6,3,2).

Now, however, it is assumed that some of the nodes (Nc in
total) of the RN are connected to a scalar potential FE problem

∆u = f, H = −∇u ⇒ Su = f . (3)

In the example Nc equals 3, with the nodes 4–6 coupled.
The potentials URN of the coupled nodes can be used as



a Dirichlet boundary condition for the FE problem, so the
system is governed by

Sfreeufree + SfixedU
RN = ffree. (4)

From the RN point of view, the FE problem can be presented
with a single extra node, Nc edges and Nc − 1 flux sources.
Obviously, the extra node and one of the edges are added to the
spanning tree, so a total of Nc − 1 additional flux loops (each
with a flux source) and the incidence matrix AFE are obtained.
In Fig. 1, the new spanning tree branch is highlighted in red,
resulting in the additional loops (7,5,2,1,4) and (7,6,3,2,1,4).

Due to the extra flux loops, (1) is changed into

ATDR
(

AΦ̂+ AFEΦ̂
FE

)
= F , (5)

The fluxes of the extra loops can be easily obtained by
calculating the flux crossing the part of the FE boundary
coupled to leaves of the tree, i.e. nodes 5 and 6 in Fig. 1.
In general, the expression

Φ̂
FE

= MFEu = MFE
freeufree +MFE

fixedU
RN (6)

can be substituted back to (5). Additionally, the mmf conser-
vation equation for the extra loops

(AFE)TDR
(

AΦ̂+ AFEΦ̂
FE

)
+CURN = FFE (7)

has to be considered. Matrix C is used to take the potential
differences between the coupled nodes into account.

Furthermore, some additional constraints are needed to
obtain a solution. Firstly, one of the coupled potentials URN

can be fixed to zero to ensure uniqueness. Secondly, if there are
Nd disjoint reluctance networks connected to the FE domain,
Nd − 1 flux conservation constraints for the corresponding
FE-boundaries are needed.

Finally, if the FE domain is restricted to linear components
only, only the diagonal reluctance matrix DR can be nonlinear.
Thus, forming the Jacobian matrix for the Newton’s method
can be done very easily, by utilizing the chain rule and the
equivalent cross-sectional areas of the reluctance elements.

III. RESULTS AND DISCUSSION

A simplified four-pole synchronous reluctance machine is
simulated both with the coupled method and traditional finite
element method. A quarter of the machine and the FE mesh
are illustrated in Fig. 2. In the actual simulations, the entire
cross-section is modelled, resulting in 2386 nodal potentials
to be solved in the FE model.

In the coupled model, only the area highlighted in red is FE-
modelled, while the remaining machine is approximated by a
simple reluctance network, resulting in only 550 unknowns.
Stator teeth and the yoke segments in between are modelled
with a single reluctance element each, while four elements are
used for the rotor flux barriers.

Fig. 3 illustrates the magnitude of air-gap flux density
calculated with the two methods. The results are reasonably
accurate, considering the comparative lightness of the coupled
model. Further improvements could probably be obtained by
refining the reluctance network, especially in the tooth region.
Comparison of actual solution times will be included in the
full paper.
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Fig. 2. A quarter of the mesh and the domain used in the coupled FE-model.
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Fig. 3. Amplitude of air-gap flux density over one pole pitch.
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